Crystal and Molecular Structure of 17α-Hydroxyandrost-4-en-3-one (Epitestosterone)

By N. W. Isaacs, W. D. S. Motherwell, J. C. Coppola and Olga Kennard,* University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW

Crystals of the title steroid are orthorhombic, $a=11$.423(1), $b=20.151$ (1), $c=7.003$ (1) $A, Z=4$, space group $P 2_{1} 2_{1} 2_{1}$. The structure has been determined by direct methods from diffractometer data and refined by fullmatrix least-squares to a final R of 0.058 for 1646 reflections. All the ring junctions are trans/trans. The conformation of ring A is half-chair while that of rings B and C is chair. The cyclopentane ring D is a slightly distorted half-chair. The molecules are linked in the crystal structure 'head-to-tail' by a hydrogen bond between the $C(17)$ hydroxy-group and the $C(3)$ keto-group.

Korenman et al. ${ }^{1}$ have identified epitestosterone in human urine and have shown that it is not derived from the peripheral metabolism of androstenolone, androstenedione, or testosterone. The biological activity of epitestosterone is $c a .25$ times less than that of testosterone which acts as a powerful androgen and is responsible for the male sex characteristics. The preference for the β-orientation of the 17 -hydroxy-group is a common feature of the biologically active estrogens and androgens. ${ }^{2}$ To investigate this characteristic we have undertaken the determination of the structures

* External staff, Medical Research Council.
${ }^{1}$ S. G. Korenman, H. Wilson, and M. B. Lipsett, J. Biol. Chem., 1964, 239, 1004.
of unsubstituted testosterone and epitestosterone. We report here the structure of epitesterone.

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}, M=288$. Orthorhombic, $a=$ $11.423(1), b=20.151(1), c=7.003(1) \AA, U=611.9(1) \AA^{3}$, $D_{\mathrm{m}}=1 \cdot 14$ (gradient column), $Z=4, D_{\mathrm{c}}=1 \cdot 19, F(000)=$ 632. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=5.89$ cm^{-1}. Space group $P 2_{1} 2_{1} 2_{1}$ from systematic absences.

Epitestosterone was obtained from Steraloids Limited, Croydon, Surrey. The crystal used for data collection was a rectangular prism $(0.48 \times 0.36 \times 0.10 \mathrm{~mm})$ mounted
${ }^{2}$ L. F. Fieser and M. Fieser, 'Steroids,' Reinhold, New York, 1959, p. 518.
with the c axis parallel to the ϕ axis of a Picker four-circle automatic diffractometer. Cell dimensions were obtained from a least-squares refinement of the 20 values of 15 axial reflections measured on the diffractometer. Intensity data were collected with nickel-filtered Cu radiation, by use of the $\theta-2 \theta$ scanning mode at a speed of $1^{\circ} \mathrm{min}^{-1}$ in 20. Background measurements were made for 40 s on either side of the peak. Of the 2717 reflections measured with $\sin \theta<0.93,1734$ were unique and 88 of these were considered to be unobserved $[I<\sqrt{ } 2 \sigma(I)$ where the $\sigma(I)$ were obtained from counting statistics]. The agreement between measurements of equivalent reflections was 1.7% (based on $|F|$). Four monitor reflections, measured ca. every 6 h , showed no signs of decay over the period of the data collection. Data were corrected for Lorentz and polarisation effects, but not for absorption.

Determination of the Structure.-The structure was determined by direct methods. A full description of the method used with a definition of symbols and major references has been given elsewhere. ${ }^{3}$ Normalised structure factors $|E|$ were obtained in the usual way after the structure amplitudes had been corrected for thermal motion using an overall temperature factor derived from a Wilson plot. The data were then scaled so that the average value of $|E|^{2}$ was $1 \cdot 00$; the $|E|$ statistics obtained are compared with theoretical values ${ }^{4}$ in Table 1. Table 2

Table 1
$|E|$ statistics

	Calc.*	
Obs.	Centro	Non-centro
0.841	0.798	0.886
1.000	1.000	1.000
0.858	0.968	0.736
3.4	32.00	36.80
3.3	$5 \cdot 00$	1.80
0.2	0.30	0.01
*	From ref. 4.	

Table 2
Starting set of reflections together with final refined values for symbolic phases

h	k	l	Φ initial	Φ final
3	15	0	$\pi / 2$	
2	9	0	0	Fixed for origin
0	8	5	0	
2	0	0	0	0
7	11	2	$\mathrm{a}(\pm \pi / 4, \pm 3 \pi / 4)$	$138{ }^{\circ}$
2	16	6	$\mathrm{b}(\pi / 4), 3 \pi / 4)$	$356{ }^{\circ}$

lists the starting set of reflections used in the multisolution tangent formula calculations. These were chosen on the basis of the number and strength of their interactions with other reflections of large $|E|$ value. The origindefining reflections were selected according to the limitations imposed by the space group. ${ }^{5}$ The enantiomorph was defined by restricting the initial phase value of one of the symbols (b) to lie in the range $0-\pi . \quad \Sigma_{1}$ relationships indicated a phase of 0 for the 200 reflection which was therefore included in the starting set with a fixed-phase value. In the tangent formula calculations, the 50 reflections with highest $|E|$ values were refined for 5 cycles,
${ }^{3}$ O. Kennard, N. W. Isaacs, W. D. S. Motherwell, J. C. Coppola, D. L. Wampler, A. C. Larson, and D. G. Watson, Proc. Roy. Soc. Lond., 1971, A, 325, 401.
then the 100 highest for 5 cycles, and finally all the reflections for 15 cycles. The values of $E_{\text {min }}, \alpha_{\text {min }}$, and $t_{\text {min }}{ }^{3}$ were $2 \cdot 00,2 \cdot 50$, and 0.25 . Of the 8 phase sets calculated one had a significantly low $R_{\text {K }}$ value (20.4%) with 173 of the 178 data phased. The positions of all non-hydrogen atoms were located from a Karle map computed with these phased E values as coefficients. Three cycles of fullmatrix least-squares refinement reduced the conventional R factor from 0.22 to 0.14 . Two further cycles of refinement with anisotropic temperature factors reduced R to 0.13 .

It was not possible to locate unequivocally any hydrogen atoms from a difference electron-density synthesis computed at this stage of the refinement. Hydrogen atom positions for all but the hydroxy- and methyl groups were calculated assuming $\mathrm{C}-\mathrm{H} \quad 1.0 \quad \AA$. The hydrogen atoms were assigned isotropic temperature factors equal to the B values of the atoms to which they are bonded. A further cycle of least-squares calculations, keeping the hydrogen parameters fixed, reduced R to $0 \cdot 085$. A subsequent difference electron-density map showed the positions of the methyl hydrogens. Another round of refinement and a difference electron-density synthesis indicated the position of the hydroxy-hydrogen. A final cycle of refinement gave $R 0.058$ and $R^{\prime} 0.038\left\{\right.$ where $R^{\prime}=\left[\left(\Sigma_{v v}\left(\left|F_{0}\right|-\right.\right.\right.$ $\left.\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2}\right) / \Sigma_{w}\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}\right\}$. The final difference electron-density map showed no peaks $>0.3 \mathrm{e}^{\AA-3}$.

The quantity minimised throughout the refinement was $\Sigma_{v}\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$ where the weights were assigned to the various observations according to counting statistics.

Table 3

Final fractional co-ordinates for the non-hydrogen atoms

Atom	x	y	z
C(1)	0.5883 (4)	$0 \cdot 1257(2)$	0.7150(6)
$\mathrm{C}(2)$	$0 \cdot 5857$ (4)	$0 \cdot 0543(2)$	0.7891 (6)
C(3)	$0 \cdot 4663$ (4)	$0 \cdot 0250(2)$	$0.7562(7)$
C(4)	$0 \cdot 4065$ (4)	$0.0438(2)$	0.5842 (6)
C(5)	$0 \cdot 4505(4)$	$0 \cdot 0887(2)$	$0 \cdot 4615$ (6)
C(6)	$0 \cdot 3965$ (3)	$0 \cdot 0977$ (2)	$0 \cdot 2666$ (6)
C(7)	0.3731 (3)	$0 \cdot 1699$ (2)	$0.2133(6)$
C(8)	$0 \cdot 4784$ (3)	0.2149(2)	$0 \cdot 2534(5)$
$\mathrm{C}(9)$	0.5223 (3)	$0 \cdot 2051$ (2)	0.4592 (5)
$\mathrm{C}(10)$	0.5570 (4)	$0 \cdot 1316$ (2)	$0 \cdot 5034(6)$
$\mathrm{C}(11)$	$0 \cdot 6183(3)$	$0 \cdot 2550$ (2)	$0.5146(7)$
C (12)	$0 \cdot 5818(4)$	$0 \cdot 3280(2)$	$0 \cdot 4729(6)$
$\mathrm{C}(13)$	$0.5455(3)$	$0 \cdot 3364(2)$	$0 \cdot 2679(6)$
C (14)	0.4461 (3)	$0 \cdot 2876$ (2)	$0 \cdot 2248(5)$
C (15)	$0 \cdot 3988$ (4)	$0 \cdot 3101(2)$	$0.0269(6)$
C (16)	$0 \cdot 4155(4)$	$0 \cdot 3868(2)$	0.0345 (6)
C (17)	$0 \cdot 4896$ (4)	$0.4033(2)$	$0.2130(6)$
C (18)	$0 \cdot 6481$ (4)	$0 \cdot 3277(2)$	$0 \cdot 1335$ (7)
C (19)	$0 \cdot 6607(4)$	$0 \cdot 1085(2)$	0.3785 (6)
$\mathrm{O}(20)$	$0 \cdot 4262$ (3)	-0.0163(1)	$0.8674(5)$
$\mathrm{O}(21)$	0.4123(3)	0.4283(1)	0.3558(5)

The scattering factors used were taken from ref. 6. The final atomic co-ordinates of the non-hydrogen atoms are listed in Table 3 and the thermal parameters in Table 4. The hydrogen atom parameters are given in Table 5. A list of observed calculated structure amplitudes appears

[^0]in Supplementary Publication No. SUP 20444 (10 pp., 1 microfiche).*

Table 4
Anisotropic thermal parameters $\left(\beta_{i j} \times 10^{4}\right)$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	116(5)	22(1)	158(11)	0 (4)	-36(12)	-2(6)
C(2)	122(5)	23(1)	241(14)	$2(5)$	-37(14)	14(6)
C(3)	133(6)	19(1)	198(13)	3(4)	25(16)	-4(6)
C(4)	94(4)	20 (1)	200(13)	$-1(4)$	$5(12)$	-1(6)
C(5)	73(4)	15(1)	210(13)	3(3)	-2(11)	-12(5)
C(6)	89(4)	23(1)	197(13)	-9(4)	-28(12)	$-14(6)$
C(7)	67(4)	20(1)	284(13)	-2(4)	-44(12)	-4(6)
C(8)	61(3)	19(1)	151(10)	-3(3)	-3(10)	-4(5)
C(9)	$61(3)$	18(1)	180(11)	0 (3)	-2(10)	-4(5)
C(10)	75 (4)	18(1)	162(11)	0 (3)	-15(11)	-7(5)
C(11)	89(4)	20(1)	313(13)	-6(4)	-69(13)	-2(6)
$\mathrm{C}(12)$	94(4)	19(1)	225(13)	-6(4)	-20(13)	$-7(6)$
C(13)	68(4)	$21(1)$	198(13)	-2(3)	23(12)	-4(6)
C(14)	57(3)	20(1)	163(11)	-2(3)	5 (10)	-2(5)
$\mathrm{C}(15)$	116(5)	26(1)	175 (12)	-4(4)	-7(13)	$18(6)$
C(16)	141(6)	$24(1)$	252(14)	3(5)	-15(15)	$17(7)$
C(17)	96(4)	$21(1)$	168(13)	1(4)	18(12)	7 (6)
$\mathrm{C}(18)$	76(4)	30(1)	442(17)	-2(4)	118(14)	-5(9)
C(19)	74(4)	23(1)	305(14)	12(4)	24(12)	$-9(7)$
$\mathrm{O}(20)$	168(4)	30(1)	308(10)	-11(4)	27(11)	33(5)
$\mathrm{O}(21)$	109(3)	25(1)	340(10)	10(3)	32(10)	-8(5)

${ }^{*}$ In the form: $\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33^{2}}{ }^{2}+\beta_{12} h k+\right.$ $\left.\beta_{13} h l+\beta_{28} k l\right)$.

Table 5
Final fractional co-ordinates and isotropic thermal parameters (B) for the hydrogen atoms

Atom	x	y	z	B / \AA^{2}
$\mathrm{H}(1 \mathrm{Cl})$	0.540	0.155	0.798	4.2
$\mathrm{H}(2 \mathrm{Cl})$	0.669	0.147	0.741	$4 \cdot 2$
H(1C2)	0.647	0.028	0.725	$5 \cdot 5$
H(2C2)	0.609	0.051	0.925	$5 \cdot 5$
H(C4)	0.327	0.022	0.552	$3 \cdot 9$
H(1C6)	0.447	0.077	$0 \cdot 168$	$4 \cdot 2$
H(2C6)	0.326	0.072	$0 \cdot 255$	$4 \cdot 2$
$\mathrm{H}(1 \mathrm{C} 7)$	0.351	0.175	0.079	$4 \cdot 2$
H(2C7)	$0 \cdot 307$	$0 \cdot 188$	0.282	$4 \cdot 2$
$\mathrm{H}(\mathrm{C} 8)$	0.556	0.203	$0 \cdot 162$	$3 \cdot 1$
H(C9)	0.455	0.217	0.544	$3 \cdot 5$
H(1C11)	0.645	0.248	$0 \cdot 646$	4.4
$\mathrm{H}(2 \mathrm{Cl1})$	0.692	$0 \cdot 244$	0.439	4.4
$\mathrm{H}(1 \mathrm{Cl2})$	0.517	0.340	0.563	4.4
H(2C12)	0.645	$0 \cdot 359$	$0 \cdot 509$	4.4
$\mathrm{H}(\mathrm{Cl4})$	0.383	0.297	0.323	$3 \cdot 3$
H(1C15)	$0 \cdot 442$	$0 \cdot 287$	-0.080	$4 \cdot 7$
H (2C15)	0.314	$0 \cdot 297$	0.085	4.7
$\mathrm{H}(1 \mathrm{Cl})^{\text {) }}$	0.455	$0 \cdot 402$	-0.089	$5 \cdot 1$
H(2C16)	$0 \cdot 341$	$0 \cdot 410$	0.031	$5 \cdot 1$
H(C17)	0.555	0.437	$0 \cdot 178$	$4 \cdot 2$
H(1C18)	0.693	0.284	$0 \cdot 123$	$5 \cdot 3$
$\mathrm{H}(2 \mathrm{Cl} 18)$	0.679	0.338	0.012	$5 \cdot 3$
$\mathrm{H}(3 \mathrm{Cl} 18)$	0.726	0.351	0.201	$5 \cdot 3$
H(1C19)	0.652	0.094	$0 \cdot 240$	$4 \cdot 3$
H(2C19)	0.685	0.064	$0 \cdot 405$	$4 \cdot 3$
H(3C19)	0.731	0.136	0.402	$4 \cdot 3$
H(O21)	$0 \cdot 477$	0.445	$0 \cdot 462$	$5 \cdot 7$

discussion

Description of the Molecule.-Figure 1 shows a view of the molecule. The bond distances and angles are

[^1]summarised in Figure 2. The program-estimated standard deviations for non-hydrogen atoms are $0.006 \AA$ for bond lengths and 0.3° for angles. The $\mathrm{C}-\mathrm{H}$ bond distances range from $0.96-1 \cdot 11 \AA$ and the (tetrahedral) angles involving hydrogen from 85-127 ${ }^{\circ}$. The mean $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ bond length is $1.537 \AA$ with the individual distances in good agreement with those found in other steroids of this type (e.g. the $2: 1$ complex between testosterone and mercuric chloride ${ }^{7}$). The valence angles are generally larger than expected for tetrahedral carbon atoms (mean values: ring в $111 \cdot 5$, and ring C $111 \cdot 3^{\circ}$), but are in accord with similar angles found in other steroids. ${ }^{8}$

Rings B, C, and D are trans-fused. The results of torsion angle and least-squares planes calculations are given in Tables 6 and 7. Ring a contains a conjugated 4 -en-3-one system, which in epitestosterone is rigorously planar. Normally this would require that ring A adopts a sofa-conformation with $\mathrm{C}(1)$ out of the plane. However, the torsion angle at the A / B junction (see Figure 3) would in this case be around 27° and thus impose a considerable flattening on ring в since the sum of the torsion angles at a ring junction with a quaternary carbon atom is of the order of $60^{\circ}(\delta=$ $\left.120^{\circ}\right)^{8}$ In epitestosterone this situation is avoided by ring a adopting an unsymmetrically distorted halfchair configuration (Table 6). In most other steroids so

Table 6
Intra-annular torsion angles (ω) for epitestosterone compared with theoretical values from minimum-energy calculations. The standard deviations were computed by use of the formula of ref. 9 .

Ring A			Ring B		
Bond	$\omega_{\text {obs }}$.	$\omega_{\text {calc. }}{ }^{\text {a }}$	Bond	$\omega_{\text {obs }}$.	$\omega_{\text {ca.c. }}{ }^{\text {b }}$
1-2	-57.6(5)	-62	9-10	-56.6(4)	-46
2-3	36-2(5)	45	10-5	$52.4(5)$	42.5
3-4	-4.0 (6)	-15	5-6	-49.8(5)	-48
4-5	-9.5(7)	0	6-7	47.4(4)	59
5-10	-11.4(6)	-15	7-8	$-51.1(4)$	-62
10-1	44-7(5)	45	8-9	57.6(4)	56
' Half-chair ${ }^{\text {' }}$				' Chair '	
Ring C			Ring D		
Bond	$\omega_{\text {obs }}$.	$\omega_{\text {calc. }}{ }^{\text {c }}$	Bond	$\omega_{\text {obs }}$.	$\omega_{\text {calc. }}{ }^{\text {d }}$
12-11	-54.6(4)	-56	13-14	44.9(4)	$43 \cdot 8$
11-9	51.6(4)	56	14-15	-33.7(4)	-33.3
9-8	-51.1(4)	-58	15-16	10.0(4)	$10 \cdot 0$
8-14	56-3(4)	58	16-17	17.0(4)	$17 \cdot 2$
14-13	-59.6(4)	-59	17-13	$-37 \cdot 6(4)$	$-37 \cdot 7$
13-12	56.6(4)	58			
' Chair '			' Half-chair ${ }^{\text {, }}$		

- Ref. 10. ${ }^{b}$ From Table 12, col. 7 of ref. 8. ${ }^{\circ}$ From Table 4, col. 7, of ref. 8. ©Ref. 11.
far examined by X-ray diffraction methods it appears to be more favourable to allow some puckering of the

[^2]4-en-3-one system. A survey of the literature indicates that the root-mean-square displacements range from $0.05 \AA$, in cortisone, ${ }^{12}$ to $0.02 \AA$, in androstendione. ${ }^{13}$ The only other reported case of a planar 4 -en-3-one

Figure 1 A perspective view of the molecule

Figure 2 The observed bond distances and valency angles, showing the numbering of the atoms used in the discussion; $C(14)-C(13)-C(18)$ is 112.2 and $C(5)-C(10)-C(19)$ is 109.4°
system we have been able to find is 17α-hydroxyprogesterone ${ }^{14}$ where the root-mean-square displacement calculated from the authors' co-ordinate is $0.002 \AA$.

[^3]J.C.S. Perkin II

Distortion of ring в from the normal chair-configuration is indicated in Table 6 where a comparison of the observed and theoretical torsion angles shows that the ring has become flattened around $\mathrm{C}(7)$ and raised around $\mathrm{C}(9)$ (see also Table 7). Ring c has a chair conformation with reasonable agreement between the observed and theoretical torsion angles. Ring D is a distorted half-chair with a phase angle ${ }^{15} \Delta$ of $9 \cdot 0^{\circ}$.

Table 7

Least-squares planes calculations. d, the perpendicular distance (\AA) of an atom from the plane, is given followed in parentheses by d / σ where σ is the mean standard deviation of the atomic position obtained from least-squares refinement. Atoms marked (*) were not included in the mean plane calculation
Plane (1): Ring A
$\mathrm{C}(2)-0.008(1.0), \mathrm{C}(3) \quad 0.017$ (2.1), $\mathrm{C}(4)-0.018$ (2.3), $\mathrm{C}(5) 0.009(1.1), \mathrm{C}(1) * 0.794$ (99.3), $\mathrm{C}\left(10^{*}\right) 0.285$ (35.6), $\mathrm{O}(20)^{*}-0.016$ (3.2)
Plane (2): Ring A
$\mathrm{C}(3) 0.002(0.3), \mathrm{C}(4) 0.002(0.3), \mathrm{C}(5)-0.002(0.3), \mathrm{O}(20)$ $-0.002(0.4), C(1)^{*} 0.682(85.3), C(2)^{*}-0.096(12.0)$, $\mathrm{C}(10)^{*} 0.201$ (25-1)
Plane (3): Ring \boldsymbol{B}
$\mathrm{C}(5)-0.005(0.6), \mathrm{C}(10) 0.005(0.6), \mathrm{C}(7) 0.005(0.8), \mathrm{C}(8)$ $-0.005(0.8), \mathrm{C}(6)^{*} 0.565(94 \cdot 2), \mathrm{C}(9)^{*}-0.681$ (113.5)
Plane (4): Ring c
$\mathrm{C}(9) \quad 0.023(3.8), \mathrm{C}(11)-0.023$ (3.3), $\mathrm{C}(13) \quad 0.023$ (3.8), $\mathrm{C}(14)-0.023(3.8), \mathrm{C}(8)^{*} 0.657$ (109.5), C(12)* -0.669 (83.6)

Plane (5) : Ring D
$C(14)-0.038(6.3), C(15) 0.059(7.4), C(16)-0.060(7.5)$, $\mathrm{C}(17) 0.040$ (5.0), C(13)* 0.643 (107.2)
Equations of planes $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are co-ordinates in \AA.
Plane (1): $-0.4276 X+0.7487 Y+0.5065 Z=0.7655$
Plane (2): $-0.4711 X+0.7290 Y+0.4966 Z=0.4856$
Plane (3): $\quad 0.5162 X-0.4736 Y-0.7137 Z=-0.4922$
Plane (4): $\quad 0.5838 X-0.4126 Y-0.6992 Z=-0.4937$
Plane (5) : $\quad 0.8696 X-0.1685 Y-0.4641 Z=2.7615$
The best four-atom least-squares plane contains $\mathrm{C}(14)$, $\mathrm{C}(15), \mathrm{C}(16), \mathrm{C}(17)$, which are planar to within $0.06 \AA$ (Table 7). The hydroxy-group on $C(17)$ is in the α-position with a torsion angle $\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{O}(21)$ of $-163 \cdot 9^{\circ}$. The steroid skeleton is convex towards the methyl groups $C(18)$ and $C(19)$. For an undistorted skeleton the vectors $C(10) \cdots C(19)$ and $\mathrm{C}(13) \cdots \mathrm{C}(18)$ should be parallel. In this compound the angle between these vectors is $11 \cdot 1^{\circ}$ and the bending of the molecule is caused by interactions between the methyl groups and the axial hydrogens on $C(8)$ and C(11).
Newman projections down the ring junctions A / B, B / C, and C / D are shown in Figure 3. The A / B junction has already been discussed. The sum of the two intra-annular torsion angles about the B / C junction

[^4]$\left(108 \cdot 7^{\circ}\right)$ is less than the expected value ${ }^{8}$ of 115°. This decrease is probably a result of the steric interactions

Frgure 3 Newman projections down the three ring-junctions $\mathrm{a}, \mathrm{A} / \mathrm{B}$ junction $\mathrm{C}(5)-\mathrm{C}(10) ; \mathrm{b}, \mathrm{B} / \mathrm{c}$ junction $\mathrm{C}(8)-\mathrm{C}(9)$; and c , c/D junction C(14)-C(13)
between the methyl groups and axial hydrogens on $C(8)$ and $C(11)$. The sum of the two intra-annular

Table 8
Some interatomic distances $<4.0 \AA$

$\mathrm{C}(1) \cdots \mathrm{O}\left(21^{\text {I }}\right.$)	3.889	$\mathrm{C}(11) \cdots \mathrm{C}\left(7^{1}\right)$	3.794
$\mathrm{C}(2) \cdots \mathrm{O}\left(21^{1}\right)$	3.882	$\mathrm{C}(12) \cdots \mathrm{C}\left(7^{1}\right)$	3.988
C(19) \cdots O(21)	3.503	$\mathrm{C}(18) \cdots \mathrm{C}(\mathrm{7II})$	$3 \cdot 536$

Roman numerals as superscripts refer to the following equivalent pooitions relative to the reference molecule at $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}$:

$$
\text { I } 1 / 2+x, 1 / 2-y, z+1 \quad \text { II } 1 / 2+x, 1 / 2-y, z
$$

torsion angles around the c / D junction is $104 \cdot 5^{\circ}$. Although the hydroxy-group on $\mathrm{C}(17)$ is in the α-position, this value is close to the empirical value of $109^{\circ} \pm 3^{\circ}$ quoted ${ }^{8}$ for cases where an axial group is present on $\mathrm{C}(13)$ and the substituent on $\mathrm{C}(17)$ is in the β-position.

The Packing of the Molecules.-The molecules are hydrogen bonded 'head-to-tail' through the 3-ketoand 17 -hydroxy-groups; the $\mathrm{OH} \cdots \mathrm{O}$ distance and the $\mathrm{C}(17)-\mathrm{OH} \cdots \mathrm{O}$ angle being $2.899 \AA$ and 102.2° respectively. The ribbons of hydrogen-bonded molecules extend through the crystal parallel to the b axis (see Figure 4). The steroid nuclei lie almost parallel to the (100) plane of the crystal and are stacked ' top-tobottom'. Apart from the hydrogen bond there are only sixteeen intermolecular distances $<4.0 \AA$. Ten of these are between rings A and D of hydrogen-bonded

Figure 4 A packing diagram projected down the z axis. The hydrogen bond is shown by dotted lines
molecules and the remainder (see Table 8) are between pairs of almost parallel molecules separated by ca. a/2.

We thank O.S.T.I. and the M.R.C. for financial support and the S.R.C. for the provision of the diffractometer. All computations were performed on an IBM 360/44 at the Institute of Theoretical Astronomy, Cambridge and we thank the staff for their assistance.
[2/1444 Received, 21st June, 1972]

[^0]: ${ }^{4}$ I. L. Karle, K. S. Dragonette, and S. A. Bremner, Acta Cryst., 1965, 19, 713.
 ${ }_{5}$ H. Hauptman and J. Karle, Acta Cryst., 1956, $9,45$.
 ${ }^{6}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^1]: * For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

 7 A. Cooper, E. M. Gopalakrishna, and D. A. Norton, Acta Cryst., 1968, B, 2A, 935.
 ${ }^{8}$ H. J. Geise, C. Altona, and C. Romers, Tetrahedron, 1967, 28, 439.

[^2]: ${ }^{9}$ P. Huber, Appendix to E. Huber-Buser and J. D. Dunitz, Helv. Chim. Acta, 1961, 64, 2027.
 ${ }_{10}$ R. Bucourt and D. Hainaut, Bull. Soc. chim. France, 1965, 1366.
 ${ }_{11}$ J. B. Hendrickson, J. Amer. Chem. Soc., 1961, 83, 4537; 1963, 85, 4059.

[^3]: 18 J. P. Declerca, G. Germain, and M. Van Meerssche, Cryst. Struct. Comm., 1972, 1, 13.

 12 B. Busetta, G. Comberton, C. Courseille, and M. Hospital, Cryst. Struct. Comm., 1972, 1, 129.

[^4]: 16 J. P. Declercq, G. Germain, and M. Van Meerssche, Cryst. Struct. Comm., 1972, 1, 9.
 ${ }_{15}$ C. Altona, H. J. Geise, and C. Romers, Tetrahedron, 1968, 24, 13.

